

Welcome to Angular and NgRx Development Reference’s documentation!

A guide to our new developers on how we build and structure our Angular projects

Contents:

	1. Angular
	1.1. Getting started

	1.2. Angular Cheat sheet

	1.3. Style Guide

	1.4. Animations

	2. Application State
	2.1. State Best Practices

	3. State Management with NgRx
	3.1. Organizing your state using NgRx Store

	4. TSLint Settings

Indices and tables

	Index

	Module Index

	Search Page

1. Angular

Additional information on using Angular in our projects.

1.1. Getting started

There are tons of resources on how to learn Angular but start with the Angular
Introduction to get a base knowledge of how Angular works:
https://angular.io/guide/quickstart

1.2. Angular Cheat sheet

Angular has a lot of special syntax that you will have to learn. Use this cheat
sheet as a quick reference: https://angular.io/guide/cheatsheet

1.3. Style Guide

Angular.io style guide is well made and should be used:
https://angular.io/guide/styleguide

1.4. Animations

When building more complex animations try to use Angulars animations instead of
pure css animations. When you start writing conditionals and extra code in
components and templates it is a good point to start with Angular animations.
https://angular.io/guide/animations

2. Application State

2.1. State Best Practices

2.1.1. Structure the state after the frontend application, not the backend API.

The state should help you structure the data in the front end so it might not
be the best to model it after how the data is represented in the backend.

2.1.2. Make the state as flat as possible

Having a nested state will introduce complexity. By making the state flat we
will have a more maintainable solution

2.1.3. Use maps instead of arrays

We can treat our applications state as an in memory database. We want to query
the database and then it is not efficient to go through arrays to find the
data we need.
But if it represented with a map we can use it easier.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	// with Map
 objects = {
 1: {'name': 'Norrlands Guld', 'type': 'lager'},
 2: {'name': 'Guinness', 'type': 'stout'},
 3: {'name': 'Tuborg', 'type': 'lager'}
}

// with Array
objects = [
 {'id': 1, 'name': 'Norrlands Guld', 'type': 'lager'},
 {'id': 2, 'name': 'Guinness', 'type': 'stout'},
 {'id': 3, 'name': 'Tuborg', 'type': 'lager'}
]

2.1.4. Don’t model the state for use in views

It might be a quickfix to model the state of your application after how you
want to present it to the user. Different views might want to display the same
data in different ways. By modeling your data for the views you might end up
duplicating data in your state

2.1.5. Don’t duplicate data in your state

You want your state to be the single source of truth. When we have dupliated
data in the state will have to update several parts every time and eventually
this will increase complexity and introduce errors and bugs.
Make use of selector functions and custom filters to get the data you need.

2.1.6. Don’t store derived data in your state

Again with the single source of truth. If we store derived state we have to
keep it updated and this will increase complexity and might intrdduce bugs.

2.1.7. Normalize your data

We want to reduce the complexity and keep the state flat. It will be easier to
maintain and add new functionality.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	// denormalized
 users = {
 '1': {'name': 'Oscar',
 'registered_at': '2017-02-01T09:45:32',
 'groups': [
 {'id': 1, 'name': 'admin', 'description': 'Group for admins'}]
 },
 '2': {'name': 'Sara',
 'registered_at': '2017-05-04T10:20:42',
 'groups': [
 {'id': 1, 'name': 'admin', 'description': 'Group for admins'},
 {'id': 2, 'name': 'editor', 'description': 'Group for editors'}]
 },
 '3': {'name': 'Robert',
 'registered_at': '2017-12-01T14:45:40',
 'groups': [
 {'id': 2, 'name': 'editor', 'description': 'Group for editors'}]
 },
}

// normalized
users = {
 '1': {'name': 'Oscar',
 'registered_at': '2017-02-01T09:45:32',
 'groups': ['1']
 },
 '2': {'name': 'Sara',
 'registered_at': '2017-05-04T10:20:42',
 'groups': ['1', '2']
 },
 '3': {'name': 'Robert',
 'registered_at': '2017-12-01T14:45:40',
 'groups': ['2']
 },
}

groups = {
 '1': {'name': 'admin', 'description': 'Group for admins'},
 '2': {'name': 'editor', 'description': 'Group for editors'},

}

3. State Management with NgRx

Our take on using NgRx. There are a lot of instructions on how to organize your
state online and this is resources on how we decided to do it since there is
many ways to implement it.

3.1. Organizing your state using NgRx Store

3.1.1. File structure

Todo

separate store folder
MainReducer
Folder per state slice, files per state slice. Add note to say it might be wrapped.
make it ORMy with .objects

4. TSLint Settings

Index

 nav.xhtml

 Table of Contents

 		Welcome to Angular and NgRx Development Reference's documentation!

 		Angular

 		Getting started

 		Angular Cheat sheet

 		Style Guide

 		Animations

 		Application State

 		State Best Practices

 		Structure the state after the frontend application, not the backend API.

 		Make the state as flat as possible

 		Use maps instead of arrays

 		Don't model the state for use in views

 		Don't duplicate data in your state

 		Don't store derived data in your state

 		Normalize your data

 		State Management with NgRx

 		Organizing your state using NgRx Store

 		File structure

 		TSLint Settings

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

